

PLATO INVESTIGATION

PLATO, (Phosphorus Loss Assessment Tool for Ontario *from OMAFRA*) is a calculator that can be used to estimate the risk of phosphorus loss from a farmer's field. PLATO takes into consideration the many **variables** (factors) that can affect the results of the calculations.

To clearly observe how each variable affects the calculated phosphorous index, input the following base data and then conduct the investigations as directed.

1. Field information page

Ontario 🕅	AgriSuite	FR =
	Get the most from AgriSuite Sign in	×
r Plato 1		Metric 🗸
Field Information Phosphorus loss Report	Resources	
Farm A	Feld 1	Field area ha
User for municipality of Chatham - Kent	 Genoushie Chatham 	
St. Clair	Very Fine Sandy Loam	
880.47	20	
Notes	/. 🗨	

Note: Use metric units

2. Go to the **Phosphorus Loss** page and input the data indicated below. "Tillage Practice" information will be manipulated in Investigation #1.

Ontario 🕅	AgriSuite
	Get the most from AgriSuite Sign in
👚 Plato 1 🧪	
Field Information Phosphorus loss Report Resources	
Corn	grain *
Systemic	10 m
3 - 10m	Castimated soll erosion
Calculate value	Value will automatically change in tonne/ha of relation to "tillage practice".
Tillage method Plough (fall) Material and fertilizer applications	Tilage practice Contour Farming
Add material application Add fertilizer application	Cross Slope
	Strip Cropping, Contour
Investigation #1: Tillage Practice	Strip Cropping, Cross Slope
	Up & Down Slope

Conducting an Investigation

In order to determine the specific cause of an outcome in an investigation, a **fair test** is conducted where only one variable at a time is changed. The **Independent Variable** is the factor that is changed by the investigator i.e., type of tillage practice. The **Dependent Variable** is the factor that is measured and occurs as a result of that change i.e., total phosphorus index. To ensure a fair test is conducted, other variables that could affect the outcome are kept the same. These are called **controlled variables**.

Using PLATO, conduct the following investigations:

Investigation #1: Tillage practice

Investigate the effect the type of tillage practice has on the total phosphorus index by changing the type of tillage practice i.e., up & down slope, contour farming. Observe the new calculations in the summary chart and then record the summary information.

Example summary chart:

Summary	
Field characteristic index	97 🔒 🚺
Application loss index	1.5
Total phosphorus index	98.6
LOW	

a) Type of tillage _____

Summary	
Field characteristic index	
Application loss index	
Total phosphorus index	

b) Type of tillage _____

Summary	
Field characteristic index	
Application loss index	
Total phosphorus index	

c) Type of tillage _____

Summary
Field characteristic index
Application loss index
Total phosphorus index

d) Type of tillage _____

Summary	
Field characteristic index	
Application loss index	
Total phosphorus index	

e) Type of tillage _____

Summary	
Field characteristic index	
Application loss index	
Total phosphorus index	

Conclusions:

- 1. Does the type of tillage affect the total phosphorus index?
- 2. According to the data collected, what type of tillage practice allows for the greatest loss of phosphorus from the field? ______
- 3. What type of tillage practice would you recommend in order to have the least amount of phosphorus entering the watershed? ______

Investigation #2

Investigate the effect of the **source** of phosphorus used on the total phosphorus index. Remember that in order to conduct a fair test, only **one** variable should be changed each time and all other variables should be controlled or kept the same.

An example investigation would be testing to see if the type of animal (sheep, swine, beef, chicken...) manure applied affects the total phosphorus index. In that case whether the manure is solid or liquid would need to be kept the same as well as the method of application (tanker, deep hose, spreader...). Application rate would also need to be kept constant. Controlling all other variables that could affect the outcome ensures that the results you see is because of the variable you want to test (independent variable) and not because of other factors.

	Get the most from AgriSuite Sign in	
🕈 Plato 1 🧪		
Field Information Phosphorus loss Report	Resources	
Crop type	Crop sub-type	
Corn	grain	
Tile drainage system	Tile drainage spacing	
Systematic	7 10	
Buffer zone		
3 - 10 m		
Sail erasion method	Estimated soil erosion	
Calculate value	* 13.99	tonne/
Maximum slope		
·	%	
Tillage method	Tillage practice	
Plough (fall)	* Contour Farming	

a) Go to "Material and fertilizer applications" and begin by clicking on "Add material application".

b) Set Application rate at "50 tonne/ha" and Application method as "spreader". See example:

tenai App (iviay 1, 2022, Ρ 2055, 3)				
daterial type to use				
New material	*	Edit material types	Add material type	
Solid, Swine				
Application name				
Material App				
Application date		Season		
May 1, 2022		Spring		*
upplication method		Incorporation details		
Spreader	-	Incorporated 1 day		-

c) Click on **Edit material types**. Choose a set of criteria you wish to investigate. See example below. *Remember to change only one variable between each test i.e., Type (of manure)*

		Select material type to edit	Delete material type		
rial App (May 1, 2022; P Loss: 5)		Material name New material			
terial type to use				mmary	
w material 🔹	Edi	Form	Туре) applied	561 kg/h
lid, Swine		Solid	Swine *	n surface	2
lication name		Source	/ Wet/dry basis	ugh tile	2
aterial App		Nutrient databank	Dry Basis *	otal	
lication date	Seaso				
ay 1, 2022 💼	Sprin	Dry matter range			
		Average (18-100%)			
lication method	Incorp	Phosphorus (P)			
reader *	Incol	0.49 9	6		
		Databank: 0.49 % (80 sample	es)		
lication rate					
tonne/ha					
			Clos	-	

c) Record the data found on the Summary chart. (*Data may be recorded in your science journals or observation charts provided by your teacher*).

Conclusions and Applications:

Based on your observed data, what recommendations might you make to reduce the phosphorus index and subsequent loss of phosphorus into the watershed?

Extensions:

Many factors/variables related to **Material application** can be investigated. Variables such as the application method, the form (solid/liquid), the wet/dry/basis, the time of application, application rate *or* a comparison between application of manure or fertilizer as source of phosphorus can be made. *Reminder: Choose only one variable to test at a time. Record and analyze your data and make recommendations based on that data.*

h2kn0w

Add material application Add fertilizer application		-	
			Investigating Fertilizer Products
Fertilizer App (May 1, 2022; P Loss: 0.4)			-
Application name	C Application date		a) Click on Add fertilizer application.
Fertilizer App	May 1, 2022		b) Sot Eastilizer type and Application
C Incorporation details			b) Set Fertilizer type und Application
Incorporated 1 day	-		rate at controlled level i.e., dry, 100
			kg/ha
 Calculate phosphate applied 			
C Enter phosphate applied			c) Choose a fertilizer product to test.
11-52-0 MAP @ 100 kg/ha		`	d) Record data.
- Fertilizer type	- Fertilizer product		
Dry	11-52-0 MAP		e) Change fertilizer product to a new
	mono ammonium phosphate (MAP)		test sample and record findings.
Application rate	/		
100 kg/ha			f) Make recommendations.

Further Explorations:

Explorations into how different factors affect phosphorus loss can also be conducted. Remember to change only one factor at a time in order to get a clearer "cause and effect relationship".

Here are some other possible explorations/investigations:

- What is the effect of the amount of rainfall on the phosphorus loss index? (Does using different sources of phosphorus vary these outcomes?)
- What is the effect of soil type on the phosphorus loss index?
- Does the method of application affect the amount of phosphorus lost in runoff?
- Does the type of crop grown affect the amount of phosphorus lost in runoff?
- How does buffer zone width affect the amounts of phosphorus that enter nearby watershed?
- How does the time of year phosphorus is applied affect the phosphorus loss index amounts? (Does using a different source of phosphorus vary these outcomes?)

4R Stewardship

4R Stewardship works to increase production and profitability for farmers while enhancing environmental protection and improving sustainability. To achieve those goals, the 4Rs incorporate the:

- Right Source of fertilizers that are in or are easily converted to compounds best used by the target crop.
- Apply the Right Rate of fertilizer to match nutrient supply with crop requirements.
- Apply fertilizer at the Right Time so nutrients will be available when crop demand is high.
- Apply or maintain fertilizer in the Right Place where the crop can access the nutrients most effectively.

Based on the results of your investigations using **PLATO**, develop a pamphlet or ad campaign promoting **4R Stewardship** as a means of reducing phosphorus loss to nearby watersheds. Include the benefits of using **Plato** as farmers plan their upcoming growing year.